math/Proof of Output of Low pass filter with Pulses converges into the average

\newcommand{\sbr}[1]{\left[#1\right]} \newcommand{\br}[1]{\left(#1\right)} \newcommand{\cbr}[1]{\left\{#1\right\}} \newcommand{\abr}[1]{\left|#1\right|} \newcommand{\exbr}[1]{\left\langle #1 \right\rangle} \newcommand{\nbr}[1]{\left\lVert #1 \right\rVert} \newcommand{\fNorm}{\mathcal{N}} \newcommand{\sC}{\mathbb{C}} \newcommand{\sN}{\mathbb{N}} \newcommand{\sR}{\mathbb{R}} \newcommand{\sL}{\mathit{\Lambda}} \newcommand{\sG}{\mathit{\Gamma}} \newcommand{\sSS}{\mathit{\Omega}} \newcommand{\sE}{\mathcal{E}} \newcommand{\sFW}{\mathfrak{W}} \newcommand{\sFB}{\mathfrak{B}} \newcommand{\sFF}{\mathfrak{F}} \newcommand{\sFX}{\mathfrak{X}} \newcommand{\sFP}{\mathfrak{P}} \newcommand{\Open}[1]{\mathfrak{O}(#1)} \newcommand{\Close}[1]{\mathfrak{A}(#1)} \newcommand{\sComp}[1]{{#1}^{c}} \newcommand{\sIn}[1]{{#1}^{i}} \newcommand{\sAd}[1]{{#1}^{a}} \newcommand{\sOp}[2]{{#1}^{#2}} \newcommand{\rt}{\mathbf{t}} \newcommand{\ReLU}{\mathrm{ReLU}} \newcommand{\rx}{\mathbf{x}} \newcommand{\trx}{\tilde{\mathbf{x}}} \newcommand{\rf}{\mathbf{f}} \newcommand{\rv}{\mathbf{v}} \newcommand{\ry}{\mathbf{y}} \newcommand{\rz}{\mathbf{z}} \newcommand{\card}{\mathrm{card}} \newcommand{\ce}{\mathrm{e}} \newcommand{\od}{\mathrm{d}} \newcommand{\ot}{\mathrm{t}} \newcommand{\cpi}{\uppi} \newcommand{\deriv}[2]{\frac{\partial #1}{\partial #2}}

Definitions

The system focused on here is also called 1st order system. It is formulated with the following equation. \frac{\od Q}{ \od \ot} = \frac{1}{\tau}\br{- Q + q} where \(Q\) is a capacity of the system, \(\tau\) is a time constant, \(q\) is an input. The followings are assumed in this discussion. For any \(t\) on the time axis \(\ot\) \frac{1}{T}\int_{0}^T q(t + \ot )\od \ot \approx \bar{q} \in \sR, where \(T\) is a interval that average of \(q\) in any interval with the length \(T\) is approximately \(\bar{q}\). More specifically, for all \(a\in \sR\) there is a \(C \in \sR\) such that \abr{\frac{1}{a}\int_{0}^a q(t + \ot )\od \ot - \bar{q}} \leq C\ce^{-\frac{a}{T}} , that is, error will decrease exponentially with respect to \(a\). The following \(h\) is introduced along with the constraint, T \ll \tau \ll h, and, \abr{Q(t)}\leq 1,\abr{q(t)} \leq 1, Q(0) = 0 note that \(\abr{Q(t)}\leq 1\) can be assured from the other 2 conditions above and the equation .

Proof

With the above mentioned definitions, is investigated. It can be, \frac{\od Q}{ \od \ot}\ce^{\frac{\ot}{\tau}} + \frac{1}{\tau}\ce^{\frac{\ot}{\tau}} Q = \frac{1}{\tau}q\ce^{\frac{\ot}{\tau}} so, Q(t + h) \ce^{\frac{t + h}{\tau}} = Q(t) \ce^{\frac{t}{\tau}} + \frac{1}{\tau}\int_{t}^{t+h}\ce^{\frac{t}{\tau}} q(\ot)\od \ot, multiplying \(\ce^{\frac{t + h}{\tau}} \) on both side of the equation, we have, Q(t + h) = Q(t) \ce^{-\frac{h}{\tau}} + \frac{1}{\tau}\ce^{-\frac{h}{\tau}}\int_{0}^{h}\ce^{\frac{x}{\tau}} q(t + x)\od x. From the assumption, \(Q(t) \ce^{-\frac{h}{\tau}} \approx 0\). Let, N = \max\cbr{i; i \leq h/T, i \in \sN}, L = h/N, Then, Q(t + h) &\approx \frac{1}{\tau}\ce^{-\frac{h}{\tau}}\sum_{i=0}^{N-1}\int_{0}^L\ce^{\frac{iL + y}{\tau}} q(t + iL+ y)\od y\\ &= \frac{1}{\tau}\ce^{-\frac{h}{\tau}}\sum_{i=0}^{N-1}\ce^{\frac{iL}{\tau}}\int_{0}^L\ce^{\frac{ y}{\tau}} q(t + iL+ y)\od y\\ &= \frac{1}{\tau}\ce^{-\frac{h}{\tau}}\sum_{i=0}^{N-1}\ce^{\frac{iL}{\tau}}\int_{0}^Lq(t + iL+ y)\od y\ \because \ce^{\frac{ y}{\tau}} \approx 1\\ &= \frac{1}{\tau}\ce^{-\frac{h}{\tau}}L\bar{q}\sum_{i=0}^{N-1}\ce^{\frac{iL}{\tau}}\ \because \\ &= \frac{1}{\tau}\ce^{-\frac{h}{\tau}}L\bar{q}\frac{\ce^{\frac{NL}{\tau}}-1}{\ce^{\frac{L}{\tau}}-1}\\ &= \frac{1}{\tau}\ce^{-\frac{h}{\tau}}L\bar{q}\frac{\ce^{\frac{h}{\tau}}-1}{\frac{L}{\tau}}\ \because \frac{L}{\tau}\ll 1, L = h/N\\ &= \bar{q}\br{1-\ce^{-\frac{h}{\tau}}} Therefore, considering \(\ce^{-\frac{h}{\tau}} \approx 0\) because \(\tau \ll h \), Q(t+h)\approx \bar{q}

Note and limitation

Error is not discussed rigorously. The proof uses \(\approx\) notation, that is not precise. This result can be observed in a system uses Pulse Width Modulation and Pulse Density Modulation.